The Software Life Cycle

Software Engineering
Andreas Zeller * Saarland University

SIMPLY EXPLAINED

SOMETHING i

GREAT
SOFTWARE

DEVELOPMENT PROCESS

Denver
A Software Cirisis International
—Airport (DIA)
Construction started
~ + Planned: 1. 7bi

19

Code and Fix

(1950-)

Build first version
Modify until
client is satisfied

Operate

Retirement

Code and Fix: Issues

® No process steps — no specs, docs, tests...
® No separation of concerns — no teamwork

® No way to deal with complexity

Code and Fix

Waterfall Model

(1968)

Communication ‘

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling .
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Communication

6.6 Map Series Tool

Communication S
2 S mags for a given boundary feature (camparnment
PI'O]eCt initiation } = EL“I::S“:GP" ote)
o o l Actors ser
reqwrements gat Pre-Conatons | User requires one of more maps sheets 1rom a senes,

for a boundary feature
Post Condtions | Map o senes of maps s generated and prnted
L Proy | Requred

Scenario
[) User starts the 1ol o)
| Systern displays a kst of map senes that the user can select from Delaut
| map senes will be Landscape 1.7920" Con be set st any scale
| 2) User selects map sencs on foem
[System then determnes I any boundiry features are selected
| | A" Features Selected
| i If features are selected, it asks the user to f they want fo
generale a map senes for the selected feature. Only one feature can
| usad at atme
B No Festures Selected
L I nofostures are selecled, or user opls to sekect the feature
manualy, the System prompés the user (o select the distnct and
compartment of interest from pull downs. It than 200ms 10 that
location. generates the map sheet boundaries, draws them with the
map sheet names
[3) User can select nchvicual sheets on screen, of SERCt 10 prt just an
|__index map_of the entice senes
| System starts generatng and printing maps based on the selected
sheets

{4)_User coliects maps from prefer

reMap and in ArcGIS Server 1

Waterfall Model

(1968)

Communication .

project initiation
requirements

Planning

estimating
scheduling
tracking
Modeling
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Planning

|| Irstata:
5 loAQ system

0 Archeectura/P

Planning

Technology ¢ estimating

g’
2 *
scheduling]
~ | —
tracking
[
antrel system (DCS) w v
VR (sub-deectors, hal infrastruccure) | [—
Architectura/Ev huatons /R80 I {
Irkerf ace technalogy recommendations | * |
Inkwim GeveloomentT est beams/Prodhf e

Fnal Tachnology/Product chose %
Acauisition

0 inframtructure dev

Subdetector system s dev

o

System Instatason/integravon | M—

LHCD start:

Waterfall Model

(1968)

Communication .

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Waterfall Model (1968)

Microsoft Outlook™ 2000 Object Model Extended View

Modeling

analysis

Waterfall Model

(1968)

Communication .

project initiation
Planning
estimating .
scheduling

requirements
tracking
Modeling .
analysis

design
Construction .

code

test

Deployment

delivery

support

feedback

Waterfall Model

Ovderl = order
orxdarz = order

G - Construction

i€ (! (fpm = code
1 test

fprintt
exitl2)

)
#endilt e
~ e
T ordAe i 9 axov

” 0”””'.00001

7+ a)l)locBTE Tla umed YO P,

——

Waterfall Model

(1968)

Communication .

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling
analysis

design
Construction
code

test
Deployment

delivery

support
feedback

Deployment

Deployment
delivery
support
feedback

Waterfall Model

(1968)

Communication
project initiation
requirements

Planning
estimating
scheduling

tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

http://

geekandpoke.typep
-~ ad.com/

geekandpoke/
—2012/05/simply——
~explained-wtf.htm

SIMPLY EXPLAINED

WE'RE
PLANNING A
EXPEDITION TO A PART
OF THE JUNGLE WHERE
NO MEN HAVE EVER
BEEN

WOW!
THAT SOUNDS
EXCITING!
AND HOW WILL YOU
FIND YOUR WAY
WHEN YOU ARE
THERE?

PLANNING A
EXPEDITION TO A PART
OF THE JUNGLE WHERE
NO MEN HAVE EVER

WE'RE
WOW!

BEEN EXCITING!

THERE?

THAT WILL BE

WE ALREADY SPENT
6 MONTHS TO
DRAW THE

EASY.

MAPS

WATERFALL

Waterfall Model

(1968)

Real projects rarely follow a sequential flow
Hard to state all requirements explicitly
No maintenance or evolution involved

Customer must have patience

® Any blunder can be disastrous

THAT SOUNDS

AND HOW WILL YOU
FIND YOUR WAY
WHEN YOU ARE

http://
geekandpoke.typep
—ad.com/
geekandpoke/
- 2012/05/simply-

lained=-wtf.html

http://
geekandpoke.typep
—ad.com/
geekandpoke/
- 2012/05/simply-

explained-wtf.html

Boehm’s first law

Errors are most frequent
during requirements and design activities

and are the more expensive
the later they are removed.

Problem Cost

[Relative cost of problem per phase

22.5

15.0
7.5
0
Coding Unit test Component test System test Field
Incremental Model
Features
Increment #3
Increment #2
Increment #1

Time

This and other laws
are found in

- Endres/Rombach:
Handbook of

-~ Software and
Systems
Engi .

- .

Eulclle_ncel SEE“ eral

1TN7A

Incremental Model

® Each linear sequence produces a particular
“increment” to the software

® First increment typically core product;
more features added by later increments

® Allows flexible allocation of resources

Prototyping

- Quick Plan

Deployment and
Feedback
B 2 Prototype
Construction

Quick Design

3
£k
e

Prototypes

Top Layer (GUI)

Bottom Layer

Horizontal Prototype

BEEEE

Prototypes

Top Layer (GUI)

Vertical Prototype

Top Layer (GUI)

Bottom Layer

Prototypes

® A horizontal prototype tests a particular layer
(typically the GUI) of the system

® A vertical prototype tests a particular
functionality across all layers

® Resist pressure to turn a prototype into a
final result!

Spiral Model

(1988)

Planning

N,

TeSt D System maintenance
D S',-s:em enhancament

I:I System cevelopment

Communication

Construction

Il Concept development

Spiral Model

System is developed in series of
evolutionary releases

Milestones for each iteration of the spiral

Process does not end with delivery

Reflects iterative nature of development

Unified Process

(1999)

Inception

Software

Communication Planning

Increment

Production Elaboration

Deployment Modelling

Construction

Transition

Inception

Inception

Communication [Planning

® Encompasses communication with user +
planning

® Results in a set of use cases

® Architecture is just a tentative outline

Elaboration

Planning

® Refines and expands

preliminary use cases * Elaboration

® Provides architecture
and initial design model

Modelling

Construction

® Builds (or acquires)
software components
according to architecture

® Completes design model

® Includes implementation, Modelling

unit tests, acceptance tests

Transition

® Software given to end users for beta testing
® Feedback reports defects and changes

® Support information written

Deployment

Production

Software ® Software is deployed

Increment

® Problems are monitored

Deployment

Production

Re-lteration

Communication

%
L

® Feedback results in new

iteration for next release
Deployment

Unified Process

Inception

Software

Communication Planning
Increment

Production Elaboration

Deployment

Transition /m\ Construction

Modelling

Unified Process

® Draws on best features of conventional
process models

® Emphasizes software architecture and
design

® |ntegrates with UML modeling techniques
(more on this later)

If a traditional process is like a
battleship, protected against everything
that might happen...

an agile process is like a speedboat,
being able to change direction very
quickly

Agile
Alliance

Manifesto for Agile Software Development (2001)

Individuals and activities over processes and tools.

® Working software over comprehensive documentation.

® Customer collaboration over contract negotiation.

Responding to change over following a plan..

What is Agile Development?

® Fast development? Hacking? Prototyping?
Uncontrolled fun? Programmer heaven?

® Agility = ability to react to changing situations
quickly, appropriately, and effectively.

® notice changes early
® initiate action promptly
® create a feasible and effective alternative plan quickly

® reorient work and resources quickly and effectively

Agile?

Communication
project initiation
requirements

Planning

estimating
scheduling
tracking

Modeling
analysis
design
Construction

code
test

Deployment

delivery
support
feedback

Incremental Model

Features

Increment #3

Communication
G

e

Increment #2

Communication Cons:::(uon

Increment #1 S
g

Construction
code

Deployment

Time

Time

A

3

Agile Processes

Waterfall Iterative

Test
Implement

Design

Agile Processes

n

>

Scope

Credits: Prof. Bodik

Agile vs. Plan-driven

Agile

Low criticality
Senior developers

Requirements change very
often

Small number of developers

Culture that thrives on chaos

Plan-driven
High criticality
Junior developers

Requirements don't change too
often

Large number of developers

Culture that demands order

What is an Agile Process!?

e Difficult to predict which requirements will
persist or change in the future.

® For many types of software, design and
development are interleaved.

® Analysis, design, construction, and testing

are not as predictable.

So, how to tackle
unpredictability?

make the process adaptable...

Extreme Programming

Software
Increment

® |n XP, planning takes
place by means of

stories

® Each story captures
essential behavior

(1999-)

Planning

Planning

Booking,
10 ereate 8 7
1.-1:“:‘:"”......««‘&«
mﬁ:". ”“M..m-:;..’
h"lm ity at ey point A
e atfiaent dets. <o
',,,,,“uwlv‘"l-
uin-q:“n‘"""""‘am
e provide service I
e
kwﬁ*wﬁ'm“‘
mzmnh&nm-
return-journey Booking. All relevent
details wil be copeed acress into the
return Basking, with the pick-up and
mnwm
— |
T wont eny Poyment Mathod, and Telephone
created in a Booking 1o be associated
directly with the Customer, 50 I com re-use
them in o future booking. Where there are.
muttiple Payment Methods and Telephones.
T wont the customer to be able to
specfy which is the preferred one.

| 2 ot 10 be able 10 create me gy

Method end Telephone %!
; are copied

T wont the Customer object 10 be cbic fo
store Locations used by that custemer
and 1o give them nicknames’, with the
most frequently used Locations at the

top of the kst s

1 want o City ebject to hold a list of
common locations (eg Airperts, Theatres).

6

1 want 10 be cble fo create @ new Bocking
.ym.uuﬂmo-uﬂyum
another Location, indicating pick-up and
drop-off. This should work whether I am
doing 1t from o Customer's st of frequent
locations, or a City's list, or both.

Extreme Programming

Planning ey

;\c?«“‘ 2
A% ,‘"’{z"f'.-’.

} 2

F 285>

&7
Software
Increment

Extreme Programming

Design

® Design is made on the fly, using the KISS
(keep it simple) principle

® Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

Extreme Programming

Planning E
o iy
- .
Gl
3

Software
Increment

Coding

® Each story becomes a
unit test that serves as
specification

® The program is ;
continuously refactored Codm

to have the design
match the stories

Coding

® To ensure continuous
review, XP mandates
pair programming

Extreme Programming

Planning i
o «?ﬁ:g
)

Software
Increment

Testing

Unit tests

® detect errors

functionality

® measure progress

Extreme Programming

Planning

® The resulting
prototypes result in
new stories

Software
Increment

Extreme
Programming is
deliverables per

dav!
Vlu

Extreme Programming

2
T Design
& ¢ =0
A]
Ie <5
(.?:Et
) |

Spot the Difference

Code and Fix
Build first version
Modify until
client is satisfied

(1950-)

<

Retirement

Scrum

An iterative and incremental agile software
development method for managing software projects
and product or application development.

Small working teams to maximize communication,
minimize overhead and maximize knowledge sharing.

Adaptable to technical and business changes.

Yields frequent software increments that can be
inspected.

So, aren’t agile
techniques just

disguise? Why not?
explicit
__requirements, and

fici '
__assurance)

Scrum = iterative and incremental

agile software development method

for managing software projects and

product or application development.

In rugby, a scrum refers to the

manner of restarting the game after
inor-infraction.

Scrum

® Development work and the people who perform it
are partitioned into clean, low coupling partitions.

e Constant testing and documentation is performed.

® Ability to declare project “done” whenever required.

Scrum (/]

Serunw 15 minuie daily meeting.
Teams member respond to basics:
1) What did you do since last Scrum

hlzeting?

2) Do you hawve any ohstacles?
Sprint Backiog: Backiog 3) What will you do before next
Feature(s) iterns 30 days meeting?

assignad expanded

to sprint
New functionality

GEan: | Is demonstrated
. i at end of sprint
B Prociuct Backiog

Vi Prioritized product features desired by the customer

Scrum

Backlog: A prioritized list project requirements or
features that provide business value.

Sprints: Consists of work units that are required to
achieve a defined backlog into a predefined
time-box (usually 30 days).

Scrum Meetings: Short 15 mins. meetings held daily by the
scrum team.The Scrum master leads the
meeting.

Demos: Demonstrate software increment to the
customer for evaluation.

Your Sprints

| Top Layer (GUI) :

2.Top Layer

|. Core Use Case

Haves

—— May-
Bottom Layer

http://

SIMPLY EXPLAINED

geekandpoke.typep
| —ad.com/
S | | I
2 ,>/\% geekandpoke/
> W - 2012/05/

development-

%@) — ¢cycle.html

N

DEVELOPMENT CYCLE

Waterfall Model

(1968)

Code and Fix

ommunication

nnnnn

Summary

Unified Process Extreme Programming

(1999)

