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Code and Fix

(1950-)

Build first version
Modify until
client is satisfied

Operate

Retirement

Code and Fix: Issues

® No process steps — no specs, docs, tests...
® No separation of concerns — no teamwork

® No way to deal with complexity

Code and Fix




Waterfall Model

(1968)
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Real projects rarely follow a sequential flow
Hard to state all requirements explicitly
No maintenance or evolution involved

Customer must have patience

® Any blunder can be disastrous
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Boehm’s first law

Errors are most frequent
during requirements and design activities

and are the more expensive
the later they are removed.

Problem Cost

[ Relative cost of problem per phase
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Incremental Model

® Each linear sequence produces a particular
“increment” to the software

® First increment typically core product;
more features added by later increments

® Allows flexible allocation of resources

Prototyping

- Quick Plan

Deployment and
Feedback
B 2 Prototype
Construction

Quick Design
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Prototypes

Top Layer (GUI)
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Horizontal Prototype
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Prototypes

® A horizontal prototype tests a particular layer
(typically the GUI) of the system

® A vertical prototype tests a particular
functionality across all layers

® Resist pressure to turn a prototype into a
final result!

Spiral Model

(1988)
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Spiral Model

System is developed in series of
evolutionary releases

Milestones for each iteration of the spiral

Process does not end with delivery

Reflects iterative nature of development




Unified Process

(1999)

Inception

Software

Communication Planning

Increment
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Deployment Modelling
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Inception

Inception

Communication [ Planning

® Encompasses communication with user +
planning

® Results in a set of use cases

® Architecture is just a tentative outline

Elaboration

Planning

® Refines and expands

preliminary use cases * Elaboration

® Provides architecture
and initial design model

Modelling




Construction

® Builds (or acquires)
software components
according to architecture

® Completes design model

® Includes implementation, Modelling

unit tests, acceptance tests

Transition

® Software given to end users for beta testing
® Feedback reports defects and changes

® Support information written

Deployment

Production

Software ® Software is deployed

Increment

® Problems are monitored

Deployment

Production




Re-lteration

Communication

%
L

® Feedback results in new

iteration for next release
Deployment

Unified Process

Inception

Software

Communication Planning
Increment

Production Elaboration

Deployment

Transition /m\ Construction

Modelling

Unified Process

® Draws on best features of conventional
process models

® Emphasizes software architecture and
design

® |ntegrates with UML modeling techniques
(more on this later)




If a traditional process is like a
battleship, protected against everything
that might happen...

an agile process is like a speedboat,
being able to change direction very
quickly

Agile
Alliance

Manifesto for Agile Software Development (2001)

Individuals and activities over processes and tools.

® Working software over comprehensive documentation.

® Customer collaboration over contract negotiation.

Responding to change over following a plan..




What is Agile Development?

® Fast development? Hacking? Prototyping?
Uncontrolled fun? Programmer heaven?

® Agility = ability to react to changing situations
quickly, appropriately, and effectively.

® notice changes early
® initiate action promptly
® create a feasible and effective alternative plan quickly

® reorient work and resources quickly and effectively

Agile?
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Agile Processes

Waterfall Iterative

Test
Implement

Design

Agile Processes
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Scope

Credits: Prof. Bodik

Agile vs. Plan-driven

Agile

Low criticality
Senior developers

Requirements change very
often

Small number of developers

Culture that thrives on chaos

Plan-driven
High criticality
Junior developers

Requirements don't change too
often

Large number of developers

Culture that demands order

What is an Agile Process!?

e Difficult to predict which requirements will
persist or change in the future.

® For many types of software, design and
development are interleaved.

® Analysis, design, construction, and testing

are not as predictable.




So, how to tackle
unpredictability?

make the process adaptable...

Extreme Programming

Software
Increment

® |n XP, planning takes
place by means of

stories

® Each story captures
essential behavior

(1999-)
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Extreme Programming
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Increment

Extreme Programming

Design

® Design is made on the fly, using the KISS
(keep it simple) principle

® Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

Extreme Programming
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Coding

® Each story becomes a
unit test that serves as
specification

® The program is ;
continuously refactored Codm

to have the design
match the stories

Coding

® To ensure continuous
review, XP mandates
pair programming

Extreme Programming
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Software
Increment




Testing

Unit tests

® detect errors

functionality

® measure progress

Extreme Programming

Planning

® The resulting
prototypes result in
new stories

Software
Increment

Extreme
Programming is
deliverables per

dav!
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Extreme Programming
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Spot the Difference

Code and Fix
Build first version
Modify until
client is satisfied

(1950-)

<

Retirement

Scrum

An iterative and incremental agile software
development method for managing software projects
and product or application development.

Small working teams to maximize communication,
minimize overhead and maximize knowledge sharing.

Adaptable to technical and business changes.

Yields frequent software increments that can be
inspected.

So, aren’t agile
techniques just

disguise? Why not?
explicit
__requirements, and

fici '
__assurance)

Scrum = iterative and incremental

agile software development method

for managing software projects and

product or application development.

In rugby, a scrum refers to the

manner of restarting the game after
inor-infraction.




Scrum

® Development work and the people who perform it
are partitioned into clean, low coupling partitions.

e Constant testing and documentation is performed.

® Ability to declare project “done” whenever required.

Scrum (/]

Serunw 15 minuie daily meeting.
Teams member respond to basics:
1) What did you do since last Scrum

hlzeting?

2) Do you hawve any ohstacles?
Sprint Backiog:  Backiog 3) What will you do before next
Feature(s) iterns 30 days meeting?

assignad expanded

to sprint
New functionality

GEan: | Is demonstrated
. i at end of sprint
B Prociuct Backiog

Vi Prioritized product features desired by the customer

Scrum

Backlog: A prioritized list project requirements or
features that provide business value.

Sprints: Consists of work units that are required to
achieve a defined backlog into a predefined
time-box (usually 30 days).

Scrum Meetings: Short 15 mins. meetings held daily by the
scrum team.The Scrum master leads the
meeting.

Demos: Demonstrate software increment to the
customer for evaluation.




Your Sprints

| Top Layer (GUI) :

2.Top Layer

|. Core Use Case

Haves

—— May-
Bottom Layer

http://

SIMPLY EXPLAINED

geekandpoke.typep
| —ad.com/
S | | I
2 ,>/\% geekandpoke/
> W - 2012/05/

development-

%@ ) — ¢cycle.html

N

DEVELOPMENT CYCLE

Waterfall Model

(1968)

Code and Fix

ommunication

nnnnn

Summary

Unified Process Extreme Programming

(1999)




